
Survey of Workload Management and 
Resource Provisioning Systems

Eric Vaandering — Fermilab

Executive Summary
An overview of workflow and resource provisioning observations from CHEP 2016  in San Fran1 -
cisco, October 2016.

Each of the LHC experiments has been extending their workflow and resource provisioning sys-
tems to be able to access clouds, super computers, and other opportunistic resources. None of 
the experiments seem to feel their workflow systems are clearly inadequate for the Run 3 or HL-
LHC challenges. ATLAS, in particular, feels they can scale up by 5–10x. Both CMS and ATLAS 
are currently operating at the 200-250K core level routinely. Workflow systems and experiment 
frameworks are being pushed in new directions to operate on preemptable resources.

While all the workflow systems rely on pilots for resource provisioning, both PanDA and DIRAC 
use pilots tightly coupled to the workflow system and are in the process of reworking their pilots. 
Both PanDA and DIRAC are multi-VO: PanDA supports ATLAS, AMS, and COMPASS. DIRAC 
seems to have momentum and supports LHCb, Belle II, BES III, CTA, ILC, and a number of 
small VOs through the UK’s GridPP project. DIRAC has recently took the step of having com-
munity governance.

Both DIRAC and PanDA have been extended by building additional layers around them for 
workflow chaining, workflow request management systems, etc. All experiments are breaking 
the old MONARC “Tier”ed model which assumed resources at sites were specialized and net-
works were unreliable and expensive. Instead, experiments are relying on remote reading 
(xrootd) and/or data transfers as part of the workflow system to make workflows more agnostic 
about where they run. 

Most experiments have had good success with analysis trains or producing analysis-group spe-
cific datasets with the production system.

Personally I was disappointed as I was looking for ways in which the LHC experiments could 
collaborate on the flexible definition of workloads (such as the chained workloads mentioned 
above) and on resource provisioning. With each experiment firmly on their own path, the oppor-
tunities for such commonality seem limited, especially with such tightly coupled systems.



Contents

ATLAS & PanDA/BigPanDA
PanDA is part of the larger ATLAS system ProdSys2  which they revamped for Run2. PanDA 2

provides the job execution and resource provisioning layers. They also use JEDI for job defini-
tion, DEFT for bookkeeping and workflow definition, and a Web UI, which all sit on top of PanDA 
analogous to how CMS uses McM, ReqMgr, 
and parts of WMAgent on top of GlideinWMS. 
They mention BigPanDA as the monitoring lay-
er, which is interesting since my understanding 
was that BigPanDA was supposed to be the 
multi-VO version of PanDA. (See diagrams to 
the right and below.) PanDA is also used by 
AMS and COMPASS, but all the presentations I 
saw seemed to be from ATLAS people.

ATLAS & PanDA/BigPanDA 2...............................................................................................
Optimizations 3...................................................................................................................
ATLAS Event service 3.......................................................................................................

DIRAC (LHCb and others) 4..................................................................................................
DIRAC Pilots 5...................................................................................................................

CMS & GlideinWMS 5............................................................................................................
Opportunistic and HPC strategies 6.......................................................................................
Other technologies 6..............................................................................................................
References 6..........................................................................................................................



Each of these layers communicates with each other through databases. I presume this is the 
PanDA database that they also use for all their job matching. They have been able to scale the 
system up to managing 250k cores of computing.

Their largest change to the computing model for Run2 regards their “cloud” model  (not to be 3

confused with cloud computing). This is how they determine where workflows run. They have 
network quality measurements between each of their sites. For a given workflow, one site is 
picked as the nucleus of the workflow and the destination site for the data. Well connected sites 
are also given jobs from this workflow, read data remotely, and write data back to the host site. 
This allows them to use reliable Tier2s to help complete the work assigned to Tier1s. This is 
similar in concept to what CMS accomplishes with “overflow” in GlideinWMS and allowing re-
mote reads with AAA/xrootd. 

ATLAS is in the process of rewriting their pilot and pilot factories.  The Pilot 2.0 is a nearly com4 -
plete rewrite since the older pilot was getting difficult to maintain. They need the ability to submit 
just one or two pilots to a supercomputer site and be able to claim large amounts of resources 
with that one pilot. They are also replacing the APF pilot factory with a new component now 
called Harvester. Harvester no longer uses HTCondor for submission to the sites. This also 
helps them with getting the burst capability in HPC resources, because marrying HTCondor with 
MPI is a difficult problem for them.

There was an illuminating talk about how ATLAS deals with memory issues.  Unlike Glidein5 -
WMS, they don’t schedule memory within the pilot and apparently job memory requirements are 
not passed into the underlying batch systems on their grid nodes. So they have a number of dif-
ferent queues with different memory requirements going up to 64 GB/core at some of their large 
Tier1 and Tier2 sites. Memory requirements for a particular workflow are determined by a few 
scouting jobs and the workflow is submitted to the right queues. The few jobs that are killed for 
exceeding these limits are resubmitted to higher memory queues. Additionally some sites don’t 
kill on memory, so the pilot has to kill the job at 2x the requested memory.

Optimizations
ATLAS described a number of optimizations to push their work through faster,  sometimes at the 6

expense of the amount of resources used. They give a priority boost to almost done tasks. They 
also have the ability to submit multiple identical jobs (to different sites) to guarantee completion 
of the highest priority workflows and discard output from the duplicates which may finish. They 
are introducing global fair share between analysis and production which can then use the same 
batch account. Finally, they say that they have cut analysis usage (as a fraction of the total) 
about in half by moving the first step of analysis workflows into the production system. I don’t 
think this is strictly an analysis train model, just a definition of analysis workflows in the chain of 
workflows. 

ATLAS Event service
ATLAS has found that strict job-based workloads are not good for non-traditional resources 
(HPC, clouds, Boinc). The amount of time to run something doesn’t match well to a predictable 
job, so they’ve been working on an event service of sorts.  They have two flavors of this de7 -
pending on if they have outbound connectivity. In both cases they assign some amount of work 



to a job which runs as the service. The first version saves events in an object store every 10 
minutes as its working. The second version (for HPCs with no outbound access) writes the 
events and how far it got to the disk of the WN; the ARC CE they use on the HPC does the data 
transfer and fakes a finished job. In both cases, if the worker is preempted, the PanDA system 
(which this is tightly integrated with) reassigns the undone work to another event service. By 
adopting this approach they recover about 10% of the data processing (about 20% of the jobs 
are preempted). They appear to have plans to extend this into what I would consider a real 
event service where specialized processes are responsible for streaming input and output from 
a number of worker nodes.8

DIRAC (LHCb and others)
DIRAC  appears to be gaining mindshare and users. It’s an open source effort with about 5 core 9

developers and since 2014 there has been a consortium with governance agreement, etc. (It’s 
been multi-VO since 2009.) Various experiments have signed on to use it: LHCb (the origina-
tors), Belle, CTA (Cherenkov Telescope), ILC, and BES III. There is also an effort in the UK to 
be able to use a single instance for a number of smaller VOs.  10

The software consists of a lot of interrelated products which are each versioned and released 
separately, but you need all of them for a distribution. Each component can also be extended by 
each VO for their own needs while maintaining the core.  (See below.) DIRAC includes its own 11

data catalog and data movement service. However, it can also be used with external data cata-
logs as some of the stakeholders do this.

CTA is building in the possibility to pre-define file locations to avoid DB queries for chained 
workflows.   12



DIRAC Pilots
LHCb is very interested in benchmarking and understanding which CPUs are faster than others 
to determine how much work to give them (CMS just targets some average), so they do bench-
marking as part of the pilot. They have been doing other work on their pilot, including recently 
adding multicore support. However, they do not support mixed multi/single core jobs in a pilot 
and don’t have plans to add this without a strong use case. (I assume this means they run one 
job/pilot.) They’ve been hard at work with their pilot code making HPC and other resources look 
the same as Grid resources.

One surprise is that only recently, with work from the ILC group, has DIRAC been able to run on 
OSG resources using the Globus toolkit and the ability to connect to HTCondor-CEs. It’s unclear 
if this code is now part of the common DIRAC distribution. 

CMS & GlideinWMS
There were no talks or presentations on WMAgent, the workflow system for CMS. There was a 
talk on Unified,  which is a set of scripts that sits outside of WMAgent and ReqMgr assigning 13

workflows, moving data, and double checking results before datasets are announced. This has 
reduced operator effort as the number of workflows has grown and also increased efficiencies 
by allowing more sites to contribute to individual workflows.

The CMS global GlideinWMS pool was discussed in a pair of talks. The first  concentrated on 14

CMS efforts to move to multicore partitionable pilots scheduling a mix of multi and single core 
work. Both types of work will co-exist during Run2 since the multi-threaded CMSSW framework 
is not used universally for all types and steps of workflows. During 2015 and 2016, all Tier1 and 
nearly all Tier2 sites began accepting multicore 
pilots for CMS. Since the pilots run HTCondor 
internally, multi and single core work can be 
scheduled inside the pilot, although with some 
loss in efficiency near the end of the pilot life-
time (shown to the right). However, multicore 
pilots reduce the total number of pilots (and 
jobs) that must be tracked in CMS and give 
them a flexible system where the work being 
scheduled need not match the size of the pilots.

The CMS Global Pool is now scaling to 160k cores and beyond.  This has been a constant ef15 -
fort working with both GlideinWMS and HTCondor developers to identify and fix the bottlenecks. 
The current scale is limited by I/O, combinatorics of job matching, and the speed of compo-
nents. Multicore pilots and workflows have reduced some scaling problems and exacerbated 
others. Reaching higher scales will require identifying issues with GlideinWMS and HTCondor 
and fixing them one by one; there is no dominant issue. A new round of scale tests, with the 
goal of testing the provisioning system to 500k cores before it’s needed, is contemplated using 
32 startds/glidein pilot.



Opportunistic and HPC strategies
All experiments and facilities that are exploring clouds are working, as best as possible, to inte-
grate these resources in a seamless way, hiding the complexities and uniqueness, especially of 
HPC systems, from the underlying parts of the workflow system and the applications. The pilot 
systems of the experiments are the key to this; starting the pilots may vary greatly, but once 
started they often integrate seamlessly. 

However workflows must be chosen carefully to run on sites with limited data access or where 
removing data from the provider (e.g. commercial clouds) incurs real expense.

Other technologies
There was an increasing amount of discussion around lightweight containers such as Docker, 
Shifter, etc. as being very useful tools to solve the environment issues we have and for being an 
easy way to bring your environment along with you, especially combined with CVMFS. We in 
HEP were admonished in being behind in this, especially in the container orchestration game 
with things like Mesos, Docker Swarm, and Kubernetes. 

Networks are the last technology we have that is still doubling every 18–24 months, but we were 
warned this may not continue as the data able to be carried by a single fiber appears to be 
reaching a plateau. Should we find ourselves in a position where we have storage geographical-
ly separated from our CPU, LHC experiments will require Tb/s networks (and peering with 
commercial providers). As usual there were discussions about needing to schedule network 
bandwidth as a resource and claims that SDN was the way to do this. This could useful for both 
scheduled data transfers or on-demand reading (xrootd).

One brief mention that interested me was of the EOS multi-site cluster.  There is now a single 16

instance of EOS that spans three sites across Australia. This is an extension of the Meyrin & 
Wigner work CERN has put in place already. Could this be the start of a global file system with 
appropriate replication and caching that could possibly remove the need to actively manage 
data locations?

References
 CHEP 2016 homepage: https://indico.cern.ch/event/505613/timetable/1

 Borodin, M. https://indico.cern.ch/event/505613/contributions/2230440/2

 Megino, F. https://indico.cern.ch/event/505613/contributions/2230706/3

 Maeno, T. https://indico.cern.ch/event/505613/contributions/2230704/4

 Forti, A. https://indico.cern.ch/event/505613/contributions/2230705/5

 Pagés, A. https://indico.cern.ch/event/505613/contributions/2230712/6

https://indico.cern.ch/event/505613/contributions/2230440/
https://indico.cern.ch/event/505613/contributions/2230706/
https://indico.cern.ch/event/505613/contributions/2230704/
https://indico.cern.ch/event/505613/contributions/2230712/
https://indico.cern.ch/event/505613/timetable/?layout=room#20161010.detailed
https://indico.cern.ch/event/505613/contributions/2230705/


 Cameron, D. https://indico.cern.ch/event/505613/contributions/2230710/7

 Tsulaia, V. https://indico.cern.ch/event/505613/contributions/2230947/8

 DIRAC homepage: http://diracgrid.org9

 Bauer, D. http://indico.cern.ch/event/505613/contributions/2230725/10

 Stagni, F. http://indico.cern.ch/event/505613/contributions/2227928/11

 Arrabito, L. https://indico.cern.ch/event/505613/contributions/2230708/12

 Vlimant, J.R. https://indico.cern.ch/event/505613/contributions/2230726/13

 Yzquierdo, A.P. https://indico.cern.ch/event/505613/contributions/2230723/ 14

 Yzquierdo, A.P. https://indico.cern.ch/event/505613/contributions/2230730/15

 Curull, X. https://indico.cern.ch/event/505613/contributions/2230703/16

https://indico.cern.ch/event/505613/contributions/2230708/
http://indico.cern.ch/event/505613/contributions/2227928/
https://indico.cern.ch/event/505613/contributions/2230710/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230723/
http://indico.cern.ch/event/505613/contributions/2230725/
https://indico.cern.ch/event/505613/contributions/2230730/
https://indico.cern.ch/event/505613/contributions/2230947/
https://indico.cern.ch/event/505613/contributions/2230703/
http://diracgrid.org

